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A recurrent problem in manpower control is how to attain the desired 

structural configuration in an optimal way, since it is possible to reach a 

desired structural configuration using different control inputs. The major aim 

of this paper is to develop a Markov Decision Process for optimal control of a 

Multi-level Hierarchical Manpower System (MHMS) by promotion and 

interdepartmental transfers. This is examined under control by intervention 

and contraction cost Markov Decision Process. 
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1.0 Introduction 

The term Markov decision process (MDP) was introduced by Bellman (1957) 

for the description of a stochastic process controlled by a sequence of actions 

under conditions of uncertainty. MDP is foundational bridge between 

stochastic optimal control on one hand and deterministic optimal control on 

the other. Collections of results with some emphasis to the theoretical aspects 

of Markov decision processes are given in Derman (1982) and Ross (1992). 

The most widely used optimization criteria in a Markov decision process are 

the minimization of the finite-horizon expected cost, the minimization of the 

infinite-horizon total expected discounted cost or contraction cost, and the 

minimization of the long-run expected average cost per unit time. 

MDP has been used in various aspects of optimization and in different areas, 

for example Bassey and Chigbu (2012) used MDP approach for the optimal 

control of oil spill in marine environment from a system-theoretic point of 

view using the state variable description of Markovian decision process and 

operational research formalism. Gonzalez-Hermandez and Villareal (2009) 

give mild conditions for the existence of optimal solution for a Markov 

decision problem with average cost and m-constraints of the same kind in 
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Borel actions and states spaces. They also show that there is an optimal policy 

that is a convex combination of at most m+1 deterministic policies whereas in 

Kyriadis (2011), MDP is used for optimal control of a simple symmetrical 

pest immigration-emigration process by the introduction of total catastrophes 

and it was shown that, a particular control-limit policy is average cost optimal 

within the class of all stationary policies by verifying that the relative values 

of this policy are the solution of the corresponding optimality equation. 

Optimal control is an aspect of optimization in which the input (control) 

parameters of a dynamical system is manipulated so as to achieve some 

desired results either by minimizing cost functional or maximizing reward 

functional associated with the control trajectory of the system. Notable 

references on this subject on both deterministic and stochastic dynamical 

systems are Kushner (1972) and Kushner and Runggaldier (1987). 

In manpower control, two aspects of control are well known. These aspects of 

control are attainability (reachability) and maintainability. Whereas 

attainability is concerned with the process of moving a manpower system 

from an initial or any given structural configuration to some desired structural 

configuration, maintainability is concerned with how to remain on the desired 

structural configuration once it is reached, Bartholomew et al. (1991). Various 

techniques have been used in optimal manpower control. For example, in 

Udom and Uche (2009) time is used as an optimality performance criterion, 

via the Pontryagin minimum principle, to obtain an optimal recruitment 

control vector for a manpower system modeled by a stochastic differential 

equation and it was shown that this recruitment vector minimizes the control 

time globally. Mouza, (2010) adapts a comparative simple dynamic system 

(plant) with analytical presentation of stocks and flows and proceeds to the 

formulation of an optimal manpower control problem aiming to achieve in the 

most satisfactory way, some pre-assigned manpower targets. The work 

presented a method of solution of the formulated manpower control problem 

based on the use of the generalized inverse. Other interesting results can be 

found in Lee et al. (2001), Rao et al. (2010) and Nirmala and Jeeva (2010). 

A recurrent problem in manpower control is how to attain the desired 

structural configuration in an optimal way, since it is possible to reach a 

desired structural configuration using different control inputs. This problem of 

optimal manpower control is also an issue in the case of a multi-level 

manpower system.  Therefore, the major aim of this paper is to develop a 
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Markov Decision Process for optimal control of a Multi-level Hierarchical 

Manpower System (MHMS) by promotion and interdepartmental transfer. 

This is examined under control by intervention and contraction cost Markov 

Decision Process. 

2.0 Multi-level Hierarchical Manpower System (MHMS) 

A manpower system is any identifiable group of people working for the 

common goal of an organization. Manpower system is usually made of stocks 

and flows. Stocks refer to the number in the various categorizations of the 

system and flows comprise of recruitment, promotion, internal transfer and 

wastage. This section provides the multi-level manpower planning model, as 

presented in Guerry and De Feyter (2012). For a G-grade manpower system, 

the stock vector, 1 2( , ,..., )Gn n n n , is the vector showing the number of 

employees in the various grades. A multilevel hierarchical manpower system 

(MHMS) is a conglomeration of manpower systems made of different 

departments or levels each made of g-grades. In this case, the stock vector for 

department or level d is 
1 2

( , ,..., )d d d d

Gn n n n , 1 d D   which represents the 

number of employees in department d in each of the grades. The overall stock 

for the MHMS is 
1 2

( , ,..., )
G

n n n n    , where 
1

g

D
d

g

d

n n



  is the overall stock 

for grade g. With respect to the department or level d, the internal transitions 

from grade i to grade j are characterized by promotion probability 
d

ijp . This 

promotion probability represents the probability that an employee in level d 

and grade i at time t is in grade j at time t+1in the same department, and this is 

assumed to be constant in time. The probability that an employee in level d in 

grade i at time t has left the department at time t+1 is 
1

1
G

d

ij

j

p


 . For all 

departments 1 d D   the promotion matrix is defined by the D D  block 

diagonal matrix 

1

2

0

0 D

P

P
P

P

 
 
 
 
  
 

, where  ( )d

d ijP p  defines the 

promotion matrix with respect to level d.  

This is the intra-department transition matrix. Transitions between 

departments are under the control of management and it is assumed that 
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interdepartmental transitions are made at discrete time periods and that this 

transition can be vertical or horizontal. The transition matrix that represents 

the evolution of the overall stock vector at organizational level is denoted by

P . The maximum likelihood estimator for transition probabilities under 

Markov assumptions therefore, is given by the following relation: 

1

1

D
d d

i ij

d
ij D

d

i

d

n p

p

n

 







 

For members of grade s the transition probability from department   to 

department   is denoted by 
s

ijt . The transitions from department   to 

department   are then characterized by the diagonal matrix ijT  defined by 

 

1

2

ij

ij

ij

G

ij

t

t
T

t

 
 
 
 
 
 
 

 

For all departments   and  , (1 , )i j D  the information on transition 

probabilities is contained in the following D D  block stochastic matrix with 

ijt  as the (i,j)th block.: 

11 12 1

21 22 2

1 2

D

D

D D DD

T T T

T T T
T

T T T

 
 
 
 
  
 

 

This is the interdepartmental transition matrix. 

In a similar way, the vector 1 2( , ,..., )d d d d

GR R R R is the recruitment vector with 

respect to department d. The vector   (          )       has as 

elements the number of recruitments per department and per grade. Now using 

these notations the stock in department d and grade g at time (t+1) can be 

predicted using the following recursive equation  

1 1

( 1) ( ) ( 1)
D G

d i i g d

g j jg id g

i j

n t n t p t R t
 

     
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In Guerry and Feyter (2012), attainability of the stock vectors at departmental 

level of this kind of system is examined under control by recruitment and 

interdepartmental transitions, in which operationalization of the concept  is 

expressed in terms of realizable approximations and compromise stock 

vectors that are solutions of constrained optimization problems. They also 

presented a multi-level optimization algorithm to determine an optimal 

recruitment strategy resulting in attainable and acceptable stocks that are a 

compromise between the proposal from the top and the proposals from the 

departments. A similar type of system is considered in Ossai and Uche (2009) 

in the context of structural maintainability of the system by introducing the 

concept of net effect of transfer which is shown to establish the 

maintainability condition in recruitment control. 

3.0 Definitions and problem formulation 

Definition 3.1 

Let dn  be the stock vector of the multilevel hierarchical manpower system 

with state space dN  and let d  be a decision process with control action 

space dD . The process  
0

( ),d d

t
t

n t



  is a MDP if for d dn N  and 0,1,2,...t   

the following holds 

   0 1( 1) ( (0), ), ( (1) , ),..., ( ( ), ) ( 1) ( ( ), )d d d d d d d d d d

t tP n t j n n n t P n t j n t          

Furthermore, for each 
dkD  and each  

d dn N , let ( , )d df n k be a cost or 

penalty vector function associated with level d of the system and 
k

dP  a 

Markov matrix of state transition for level  , then 

   ( 1) ( ( ) , ) ,d d d d

t kP n t j n t i k P i j      and the cost or penalty  ( , )df i k   

is incurred whenever d

tn i  and d

t k  . 

Definition 3.2  

A decision rule prescribes the procedure for action selection. A deterministic 

Markov decision rule is a function :d d d N D  that specifies control action 

( )d d dn D  when the system has the structural configuration 
dn .  A policy 

0 1 2( , , ,...)d d d     in a set of policies   is a sequence of decision rules, using 

current information, past information and /or randomization that specifies 
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which control action to take at each point in time. d

t  denotes the decision rule 

applied at decision epoch 0,1,2,...t  . A policy is said to be stationary if 

d d

t   . Hence a stationary policy has the form ( , , ,...)d d d     . 

Performance index or decision criterion: This is a function defined on the set 

of control strategies that represents the tradeoff the decision maker has to 

make between present and future cost. 

Consider a multilevel manpower system whose structural configuration can be 

influence by a manpower planner by a suitable choice of the control decision 

variables of the system, namely: promotion, recruitment, interdepartmental 

transfer and retirement. The structure of the system is observed at specified 

decision epochs and information necessary to control the system by moving 

the system from where it is to a desired structural configuration or in the 

direction of the desired structural configuration is gathered. As a result of the 

decision to control the system by promotion and interdepartmental transfer, a 

cost is incurred and consequently, the structural configuration of the system 

changes to a new structural configuration according to a probability 

distribution.  

We assume that the immediate cost and the transition probability function 

depend on the structural configuration of the system and the decision taken. It 

is also assumed that each decision taken is not fully predictable but can be 

anticipated to some extent before the next action is taken through the 

probability distribution and any decision taken have a long term consequence 

on the system. Control decision made at any decision epoch has an impact on 

control decision at the next epoch and so forth. Each control strategy 

generates a sequence of costs and thus measures the system response to the 

decision made. Let the set of feasible structure and decision pair  be defined 

by  

  , : ,d d d d d dn n     N D .  

The decision problem is to find a control policy that minimizes the 

performance criterion by relating the set of structures ,dN  the set of decisions 

when the structure is dn , ( )dnD , the transition probability from 

( )at time  to ( 1)at time 1d dn t t n t t  , ( ( ), ( 1))d d dP n t n t  , and the cost 
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function ( , ) :d df n k  R . Thus the Markov decision for the multi-level 

manpower system is completely determined by the tuple   

  , , , ( , )d d d d d d dn P f n kN D N .   

In this paper, we shall solve this optimal multilevel manpower control 

problem by considering contraction cost Markov decision criterion and 

control by intervention.  

4.0 Contracted cost Markov decision process 

Let the contraction factor be (0,1)  and the optimal contraction cost 

criterion be defined by 
(0)

0

( , ) ( ( ), ( ( )))d

d d t d d d

tn
t

V n E f n t n t 




  ,  

where 
(0)dn

E  denotes expectation conditioned on the initial structure (0)dn  of 

the multi-level manpower system and the policy  . Then the corresponding 

optimal contraction value function is  

*( ) inf ( , )d d d dV n V n


 . 

 The problem is to find the control policy 
*   such that   

* *( , ) ( )d d dV n V n  .        (1) 

A policy 
*  satisfying (1) is - optimal. 

Theorem 4.1: Let   be an arbitrary policy taking decision at the initial 

time 0t  . For (0,1) , let ( ) ( )d dW m V n . Then for all ,d d dn m N , 

 *( ) min ( , ) , ( )
d d

d d d d d d d d d d

m

V n f n P m n V m







 
    

 


N

 

Proof : 

Let   be an arbitrary policy taking decision 0

d at the initial time 0t   

with the probability of taking this decision dp


, 
d d D .  
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Then  ( , ) ( , ) , ( )d

d d d

d d d d d d d d d

m

V n p f n P m n W m 


 

 
    

 
 

N

 

Since it is assumed that ( ) ( )d d dW m V m , we have  

 

 

( , ) ( , ) , ( )

min ( , ) , ( )

d

d d d

d
d

d d d

d d d d d d d d d d

m

d d d d d d d d

m

V n p f n P m n V m

p f n P m n V m

 




 


 

 
    

 

 
    

 

 

 

N

N

 

Therefore 

  (2) 

 

Due to the fact that   is arbitrary, inequality 2 implies that   

 *( ) min ( , ) , ( )
d

d d

d d d d d d d d d d

m

V n f n P m n V m




 
    

 


N

 

Now let d D  be some other decision on the structural configuration, then 

   ( , ) , ( ) min ( , ) , ( )
d

d d d d

d d d d d d d d d d d d d d d

m m

f n P m n u m f n P m n V m 


 

 
       

 
 

N N  

(3) 

Supposed that d D  is taken at 0t  on (0)dn and the expected transition is 

to 
dm  then it follows that there exists 0   and ( )d dV m  such that 

*( ) ( )d d d dV m V n   , hence  

 

 

( ) ( , ) , ( )

( , ) , ( )

d d

d d

d d d d d d d d

m

d d d d d d d d

m

V n f n P m n V m

f n P m n V m

 

 





   

    





N

N

 

 
 

 

(4.2) ( , ) min ( , ) , ( )

min ( , ) , ( )

d
d

d d

d
d d

d d d d d d d d d d

m

d d d d d d d d

m

V n p f n P m n V m

f n P m n V m

 



 
 




 
    

 

 
    

 

 



N

N
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Now since  *( ) ( , )d d d dV n V n , then it is true that  

 *( ) ( , ) , ( )
d d

d d d d d d d d d d

m

V n f n P m n V m 


    
N

 

Therefore, from equation (3) we have  

 *( ) min ( , ) , ( )
d

d

d d d d d d d d d d

m

V n f n P m n V m 




 
     

 


N

 

The result follows. 

An important operator in the analysis of this problem is the operator T  

defined by  

 ( ) min ( , ) , ( )
d d

d d d d d d d d d d

m

T V n f n P m n V m







 
    

 


N  

  (4) 

For a finite structural space 
dN  and a bounded cost it can be shown that 

( )d dT V n  is a contraction map on a Banach space  B with contraction factor 

 , hence the contraction map fixed point theorem guarantees the existence of 

optimal solution 
*dV to the problem satisfying the optimality equation 

 * * *( ) ;d d dT V V V B   . 

Definition 4.1 

Let B be a real Banach space, that is,  a complete normed linear space, with 

dual 
*B and C be a nonempty closed convex subset of B. A mapping 

:T C C  is called a contraction map if and only if  

( ) ( ) ,T m T n m n m n C     .  

Definition 4.2 

A point m C  is a fixed point of T if Tm m .  

Definition 4.3 

The modulus of smoothness of B, for 1  , is the function  
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  1
2

( ) sup 1 : 1;B t m n m n m n t        .  

B is uniformly smooth if and only if  
0

( )
lim 0B

t

t

t




 . 

Theorem 4.2:   The operator T  by equation (4.4) is a contraction map with 

contraction factor   

Proof:  for any ,V W B    

 

 

( ) ( ) min ( , ) , ( )

min ( , ) , ( )

d d

d

d d d d d d d d d d d d

m

d d d d d d d

m

T V n T W n f n P m n V m

f n P m n W m

 














 
     

 

 
    

 





N

N

 

 

 

(4.5) min ( , ) , ( )

min ( , ) , ( )

d

d

d d d d d d d

m

d d d d d d d

m

f n P m n V m

f n P m n V m















 
    

 

 
    

 





N

N

 

 Where 
d is such that  

   ( , ) , ( ) min ( , ) , ( )
d d

d d d d d d d d d d d d d

m m

f n P m n v m f n P m n V m


 


 

 
       

 
 

N N

. 

Hence from equation (4.5), we have  

   

 

 

 

( ) ( ) , ( ) , ( )

, ( ) ( )

, sup ( ) ( )

, sup ( ) ( )

d d d

d d

dd d

dd d

d d d d d d d d d d d d

m m

d d d d d d

m

d d d d d d

mm

d d d d d d

mm

T V n T W n P m n V m P m n V m

P m n V m W m

P m n V m W m

P m n V m W m

   







 







    

    

    

  

 







N N

N

NN

NN

 

(4.6) d dV W   

From equation (4.6) it is easy to see that  
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 sup ( ) ( )

sup ( ) ( )

d

d

d d d d d d

m

d d d d d d

m

T V n T W n V W

T V n T W n V W

 

 









  

   

N

N

 

( ) ( )d d d d d dT V n T W n V W       

4.1 Optimal control by intervention 

Here we consider a special type of optimal control in which the multi-level 

manpower system is allowed to run uncontrolled until the decision maker 

(manpower planner) chooses to intervene, moving the system instantaneously 

to some new point in the structural space, from which it is again left 

uncontrolled until another intervention is made and so on. For any structure 
dn in the structural space 

dN ,  let ( )d dK n N  be the set of attainable 

structures and let ( , )d dC n m  be the cost of moving the system from 
dn  to 

dm  

and ( )dL n the rate of accumulation of cost in between interventions.  

Assumption 4.2 

1. There exist a compact set 
d dM N and a closed set 

d d dZ M N  

such that, for all  
d dn N ,  ( ) : ( , )d d d d d dK n m M n m Z   , and if 

( ),d dm K n  then ( ) ( )d dK m K n . 

2. C is a continuous function on 
dZ . 

3. ( , ) ( , ) ( , )d d d d d dC n m C m o C n o   for 

, ( ), ( )d d d d d dn m K n o K m  N . 

4. 0 1
( )

0 min ( , )
d d

d d

m K n
C C n m C


     

5.  2: 0,dL CN  

Let 1 2 3, , ,...   be the times of intervention, then the average cost incurred will 

be of the form  
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2

1

( ) ( , ) 0i
d d

i i

t

t d d d

tn n
it

J E e L n dt e C n m


  
  

   
  

  

Then 
2

1

( ) ( )NI
d d

t

S t d

NI tn n

t

J S E e L n dt
  

  
  
  is the cost of no intervention, which by 

assumption (4.2) is bounded and coincides with the value function 

0

0

( ) ( )d d t d

tV n E e L n dt




  
  

  
 .    (5) 

 Let   be a set of admissible control strategies and n  the set of admissible 

control strategies such that 1n    almost surely. Then for 0   and under 

the conditions of assumption (4.2) the cost of a control strategy S   when 

the system is at 
d dn N  is  

2

1

( ) ( ) ( , )i
d

d i in

t

S t d d d

tn
it

J S E e L n dt e C n m


 


  

  
  

 . 

An intervention control strategy *S   is optimal if 
* *( ) ( )d

d d

n
J S V n   

where 
*( ) min ( )d

d d

nS
V n J S


 .  

Theorem 4.3: Let ( )d d

tV n  be a bounded function. If for any strategy S , 

( ) ( )d

d d

n
J S V n , then, 

*lim ( ) ( ) min ( )d

d d d d

t nt S
V n V n J S

 
   

Proof 

The limit ( ) lim ( )d d d d

t
t

W n V n


  certainly exists, since ( )d d

tV n  is bounded. 

Since n  , ( ) ( )d d d d

tV n V n  and hence ( ) ( )d d d dW n V n . To get a 

reversed inequality, we only need to show that the cost of any strategy S  

can be approximated by that of some strategy n nS  . For any S  the 

intervention times n  satisfy n   almost surely: this follows from 
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assumption (4.2) on the existence of minimum of intervention cost 0C . Let nS  

be the strategy that follows S  up to and including time n  and then takes 

no further interventions. Then  

 1

1

( ) ( ) ( ) ( ( )) ( , )i
d d

d n i in

n

S t d d d d

n t t nn n
i nt

J S J S E e L n L m dt e C n m


  




 

 

  
    

  
  

So that  

1

2
( ) ( ) ( , )n i

d d
d i in

n

S d d

nn n
i nt

L
J S J S E e e C n m

 

 




 

 

  
   

  
   

and right-hand side converges to 0 as t   by dominated convergence. Thus 

we have shown that *( ) min ( ) min ( )d d

n n

d

n nS S
V n J S J S

  
   

which implies that ( ) ( )d d d d

tW n V n . This completes the proof. 

An analysis of the intervention strategies strongly depends on the operator M 

defined for ( )dB N  (where ( )dB N  is a bounded measurable function on

dN ) by  

( ) ( ) min[ ( , ) ( )d d d d d d

m
M n V n C n m m     

where it is assumed that M maps ( )dB N  into itself. 

Assumption (4.2) ensures that 1( )dM n C    so that (.)M  is bounded. 

The properties of this optimal intervention operator is given in the following 

propositions 

Theorem 4.4: Suppose assumption (4.2) are satisfied, then the value function 

V is the unique fixed point in ( )dB n  of the intervention operator G defined by  

0

( ) min ( ) ( )d

d t d d

tn
G n E e L n dt e M n


 




  
 

  
 
  
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Proof: By theorem (4.3) we know that d d

tV V . Where 0

dV  is defined by 

equation (6) and  

1

0

( ) min ( ) ( )d
n

d d t d d d

t t tn
V n E e L n dt e MV n


 




 



  
  

  


  (6)

 

Now 

( ) min ( , ) ( )

min min ( , ) ( )

min min ( , ) ( )

min (.)

d

d d

d d

d

d d d d d d

m

d d d d

m n

d d d d

n m

d

t
m

MV n C n m V m

C n m V m

C n m V m

MV

   

   

   



 

The same argument using the bounded- convergence theorem shows that if t  

is a decreasing sequence bounded functions and  t  then d d

tW W . 

Where 
0

( ) min ( ) ( )d

d t d d

t t tn
W n E e L n dt e n


 




 
  

  
  
  for 0 .t     (7) 

Taking d

t tMV    and taking limit as t   on both sides of equation (7) we 

conclude that satisfies  d d dV V GV  

Pareto-optimal intervention: Given a MDP and cost function ( )dn
J 

associated with the multi-level manpower system, a control intervention 

policy  
*   is Pareto optimal if there is an intervention such that 

*( ) ( )d dn n
J J  . 

Theorem 4.5 

If ˆ(0, )T   is Pareto-optimal policy for 0

dn  then for any 0  , ˆ( , )T   is a 

Pareto-optimal for dn . Where dn is the structural configuration of the system 

at time   induced by the control intervention ˆ( , )T  . 
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Proof 

Consider for 0

dn ,  0 0 0
ˆ(0) ( , ) ( , )d d

i j jJ n J n     1,2,...,j d i j  . Let 

0  . We next show that ̂  minimizes ( , )d

iJ n   on the constraint set  

 0 0 0
ˆ(0) ( , ) ( , )d d

i j jJ n J n     1,2,..,j d i j   

To this end, we note that ˆ( , ) (0)T   , next we show that any element 

( )   can be seen as an element * (0)  restricted to the intervention 

times ( , )T . That is for all   there exist * (0)   such that 

* ˆ( , )T   . To that end, let *(0, )T  be the concatenation of 

(0, ) with ( , )T    . Then clearly, * ˆ( , )T    is such that *d dn n  . 

Furthermore, 

*

0

0

0

( ) ( ) ( , )

( ) ( ) ( , )

( ) ( ) ( , )

i
d

d i in

i

d i in

i

d i in

T

S t d d d

tn
i

T

S t d t d d d

t t

i

T

S t d t d d d

t t

i

J S E e L n dt e C n m

E e L n dt e L n dt e C n m

E e L n dt e L n dt e C n m


 


 

 




 

 





 

 

  
  

  

  
   

  

  
   

  



 

 

 

from dynamic programming principle, it follows directly that ̂  minimizes 

( , )d

iJ n   on the constraint set  0 0 0
ˆ(0) ( , ) ( , )d d

i j jJ n J n     . 

5.0 Illustrative application  

The purpose of this section is to illustrate the application of the optimal multi-

level hierarchical manpower control model to a manpower data. A 2-level 

hierarchical manpower system made of 3 grades each is considered. For the 

system under consideration, as a matter of management policy, promotional 

control interventions are carried out annually. The following well defined one-

step Markovian promotion transition (control) matrices are the control 

strategies available to the manpower planner for the purpose of either 

attaining or maintaining a desire structural configuration: 
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1

1

0.2 0.5 0.1

0.0 0.5 0.4

0.0 0.0 0.7

P

 
 

  
 
  ;  

1

2

0.2 0.2 0.4

0.3 0.33 0.2

0.0 0.5 0.2

P

 
 

  
 
  ;  

1

3

0.4 0.3 0.1

0.1 0.6 0.15

0.1 0.05 0.8

P

 
 

  
 
   

2

1

0.6 0.15 0.1

0.05 0.7 0.15

0.1 0.2 0.65

P

 
 

  
 
  ; 

2

2

0.0 0.3 0.4

0.4 0.25 0.15

0.0 0.4 0.35

P

 
 

  
 
  ; 

2

3

0.1 0.6 0.3

0.1 0.5 0.35

0.2 0.3 0.4

P

 
 

  
 
   

The transition matrices above are sub-stochastic matrices as a result of the 

transitions out of the system (wastage), see also Bartholomew et al. (1991). 

The cost matrices associated with these promotion control matrices are:  

 1

1

300 500 250

0 1250 600

0 0 1050

V P

 
 

  
 
  ;  

 1

2

300 200 1000

30 825 300

0 750 800

V P

 
 

  
   ; 

 1

3

600 30 250

100 1500 225

250 75 3200

V P

 
 

  
     

 2

1

900 150 250

5 1750 225

250 300 2600

V P

 
 

  
    ;

 2

2

0 300 1000

400 626 225

0 600 1400

V P

 
 

  
    

 2

3

150 600 750

100 1250 525

500 450 1600

V P

 
 

  
     

The problem is to obtain the combination of promotion controls from the 

different levels, such that the cost of control interventions for the system is 

minimum in the long run (after a large number of intervention epochs). The 

long run (stationary) distributions of the promotion transitions are obtained by 

solving the following sets of non-homogeneous equations 

 
d d dP   

  

3

1

subject to 1d

i

i





,  

where 
 d

1 2 3, , .d d d   
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Table 1 shows the expected cost associated with the different control 

interventions. The minimum expected costs of control intervention with 

respect to the levels are asterisked  

 

Table 1: The Expected cost of control intervention and the associated optimal 

control strategy 

Table 1 shows the values of the expected cost associated with the promotion 

control interventions. It can be seen, in the table, that the expected minimum 

cost of control interventions for the system is 784.78 and the combination of 

promotion control strategies associated with this optimal value are 
1

2P and 
2

2P . 

The managerial implication therefore is that the control strategies 
1

2P and 
2

2P

should be used for optimal promotion control interventions of level 1 and 

level 2 respectively, since these are the strategies giving minimum expected 

cost in their respective levels.  

6.0 Conclusion 

In this paper, we have developed a Markov Decision Process for optimal 

control of a Multi-level Hierarchical Manpower System (MHMS) by 

promotion and interdepartmental transfers. This is examined under control by 

intervention and contraction cost MDP. Theorem on Pareto optimal 

intervention is presented. An illustrative application on optimal control by 

annual promotion control intervention of a 2-level hierarchical manpower 

system made of 3 grades each is also presented. In this way, the problem of 

optimal manpower attainment is solved by Markov decision formalism. 

60 875 1000 0 0 1 1000

51 –62.75 620 426.24

205 905.25 1338.8 803.22

784.78

514.75 1187.5 1748.8 1020.8

–160 6.5 713.75 358.54

–95 1120 1048.75 833.03

Expected 

cost 

associated 

with a 

control 

strategy

Expected 

minimum 

cost for

level d

Overall 

minimum

Levels Promoti

on 

Control 

Strategie

s

1

dV 2

dV 3

dV
1

d 1

d 3

d

dV
*dV

*d

d

V

1

1P
1d  1

2P 3
37

8
37

26
37

*426.24
1

3P 11
50

33
50

6
50

2

1P 19
43

14
43

10
43

2d  2

2P 16
119

40
119

9
17

*358.54
2

3P 13
61

24
61

24
61
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